Exercice 1 (Restitution organisée des connaissances — 4 points). Démontrer, aux choix, l'une des propriétés suivantes.

- La fonction racine carrée est strictement croissante sur $[0; +\infty[$.
- La courbe de la fonction carrée est en dessous de celle de la fonction $x \mapsto x$, elle-même en dessous de celle de la fonction racine carrée sur]0;1[; la courbe de la fonction carrée est au dessus de celle de la fonction $x\mapsto x$, elle-même au dessus de celle de la fonction racine carrée sur $]1;+\infty[$.
- Pour tout nombre $n \in \mathbb{N}$, on a :

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

— Pour tout nombre q différent de 1, on a :

$$1 + q + q^2 + q^3 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$$

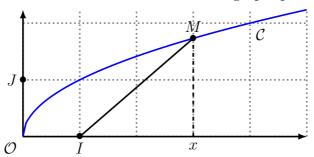
Exercice 2 (Fonction homographique — 8 points). On considère la fonction f définie sur $\mathbb{R}\setminus\{-2\}$ par : $f: x\mapsto \frac{2x-5}{x+2}$.

- 1. Montrer que pour tout x du domaine de définition, on a : $f(x) = 2 \frac{8}{x+2}$.
- 2. Déterminer les variations de la fonction $x \mapsto x+2$, puis en déduire celles de f sur $\mathbb{R}\setminus\{-2\}$.

Exercice 3 (Position relative de courbes — 4 points). On souhaite déterminer la position relative des courbes des fonctions f et g, définies sur $[-5; +\infty[$ par $f: x \mapsto \sqrt{2x^2+14}$ et $g: x \mapsto x+5$.

- 1. On considère un nombre $x \ge -5$. En remarquant que $x+5 \ge 0$, justifier que :
 - si $\sqrt{2x^2+14} \ge x+5$, alors $2x^2+14 \ge (x+5)^2$;
 - si $2x^2 + 14 \ge (x+5)^2$, alors $\sqrt{2x^2 + 14} \ge x + 5$.
- 2. Montrer que $2x^2 + 14 \ge (x+5)^2$ si et seulement si $x^2 10x 11 \ge 0$.
- 3. Dresser le tableau de signes de $x^2 10x 11$, et en déduire les solutions de $f(x) \ge g(x)$ sur l'intervalle $[-5; +\infty[$.
- 4. En déduire la position relative des courbes des fonctions f et g sur $[-5; +\infty[$.

Exercice 4 (Distance d'un point à une courbe — 4 points). Dans un repère orthonormé (\mathcal{O}, I, J) , on considère la courbe \mathcal{C} de la fonction racine carrée, et le point I de coordonnées (1;0). On cherche à déterminer la plus courte distance entre un point de la courbe \mathcal{C} et le point I. La situation est illustrée sur le graphique ci-dessous.



Pour un certain nombre x positif, on appelle M le point de la courbe $\mathcal C$ d'abscisse x.

On admet que $IM = \sqrt{x^2 - x + 1}$.

- 1. Sur \mathbb{R}^+ , déterminer les variations du trinôme x^2-x+1 , puis celles de la fonction $x\mapsto \sqrt{x^2-x+1}$.
- 2. En déduire les coordonnées de M pour lesquelles la distance IM est minimale. Combien vaut-alors cette distance?