Exercice 1 (Restitution organisée des connaissances — 4 points). Démontrer, aux choix, l'une des propriétés suivantes.

- La fonction racine carrée est strictement croissante sur $[0; +\infty[$.
- La courbe de la fonction carrée est en dessous de celle de la fonction $x \mapsto x$, elle-même en dessous de celle de la fonction racine carrée sur]0;1[.
- La courbe de la fonction carrée est au dessus de celle de la fonction $x \mapsto x$, elle-même au dessus de celle de la fonction racine carrée sur $]1;+\infty[$.

Exercice 2 (Valeur absolue — 4 points). Les questions sont indépendantes.

1. On considère la fonction f définie sur \mathbb{R} par

$$f: x \mapsto |-x+4| + |1+x|$$

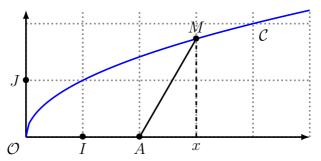
Calculer f(6) (en détaillant les calculs).

2. Prouver que pour tout $x \in \mathbb{R}$, on a $|x^2| = x^2$.

Exercice 3 (Position relative de courbes — 6 points). On considère les fonctions f et g définies sur \mathbb{R} par $f: x \mapsto x^3 + 4x^2 + 3x + 1$ et $g: x \mapsto x^3 + 2x^2 + 3x + 9$. On souhaite étudier la position relative de ces deux courbes, appelées respectivement \mathcal{C}_f et \mathcal{C}_g .

- 1. Montrer que C_f est au dessus de C_g si et seulement si $2x^2 8 \ge 0$.
- 2. Dresser le tableau de signes du trinôme $2x^2 8$.
- 3. En déduire sur quel(s) intervalle(s) C_f est au dessus de C_a .

Exercice 4 (Distance d'un point à une courbe— 6 points). Dans un repère orthonormé (\mathcal{O}, I, J) , on considère la courbe \mathcal{C} de la fonction racine carrée, et le point A de coordonnées (2;0). On cherche à déterminer la plus courte distance entre un point de la courbe \mathcal{C} et le point A. La situation est illustrée sur le graphique ci-dessous.



Pour un certain nombre x positif, on appelle M le point de la courbe \mathcal{C} d'abscisse x.

- 1. Montrer que $AM = \sqrt{x^2 3x + 4}$.
- 2. Sur \mathbb{R}^+ , déterminer les variations du trinôme $x^2 x + 1$, puis celles de la fonction $x \mapsto \sqrt{x^2 3x + 4}$.
- 3. En déduire les coordonnées de M pour les quelles la distance IM est minimale. Combien vaut-alors cette distance?