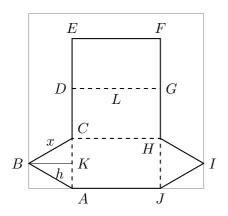
Devoir à la maison — Corrigé Analyse

Exercice 1 (Optimisation).



Le patron est construit dans un carton carré de côté $21\,\mathrm{cm}$. Les triangles ABC et HIJ sont équilatéraux; les longueurs AC, CD et ED sont égales à BC; les quadrilatères ACHJ, CHGD et DGFE sont des rectangles.

On appelle x la longueur BC, L la longueur DG, et h la longueur BK, hauteur du triangle ABC.

Les pointillés marquent les traits de pliure.

1. Calculs préliminaires

(a) Montrer que $h = \frac{\sqrt{3}}{2}x$. Il y a (au moins) deux manières de prouver cela.

Pythagore Le triangle CKB étant rectangle en K, on y applique le théorème de Pythagore : $BC^2 = BK^2 + KC^2$. Donc $x^2 = h^2 + (\frac{x}{2})^2$, et on en déduit h en l'isolant.

Trigonométrie Le triangle BCK étant rectangle, $\widehat{BKC} = 90^{\circ}$; le triangle ABC étant équilatéral, $\widehat{KCB} = 60^{\circ}$. Donc $\widehat{CBK} = 30^{\circ}$, et $\cos 30 = \frac{h}{x}$. Puisque $\cos 30^{\circ} = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, on en déduit le résultat demandé.

- (b) Exprimer la longueur L en fonction de x. En considérant le segment [BI], de longueur 21, on a : $21 = 2h + L = 2\frac{\sqrt{3}}{2}x + L$. Donc $L = 21 \sqrt{3}x$.
- 2. Quelles valeurs peut prendre x? Étudions cette fois le segment [AE], égal à 3x. Ce segment doit être inférieur à 21, donc $3x \le 21$

- 21, c'est-à-dire $x \le 7$. De plus, x est une longueur, donc positif. Ainsi : $x \in [0;7]$.
- 3. Étude de la fonction volume
 - (a) La boîte est un prisme droit à base triangulaire. Son volume est égal au produit de l'air de la base par sa hauteur. Donc

$$V = \mathcal{A}_{ABC} \times L = \frac{h \times x}{2} \times L = \frac{1}{2} \times \frac{\sqrt{3}}{2} x \times x \times (21 - \sqrt{3}x).$$

En développant, cela donne : $V = -\frac{3}{4}x^3 + \frac{21\sqrt{3}}{4}x^2.$

(b) Montrer que la fonction V est dérivable, et calculer sa dérivée.

V est une fonction polynôme : elle est donc dérivable sur $\mathbb R.$ Sa dérivée est :

$$V'(x) = -\frac{3}{4} \times 3x + \frac{21\sqrt{3}}{4} \times 2x = -\frac{9}{4}x^2 + \frac{21\sqrt{3}}{2}x$$

(c) $R\acute{e}soudre\ V'(x)\geqslant 0.\ V'$ est un polynôme du second degré. Nous pouvons utiliser nos connaissances sur les trinômes pour résoudre cette inéquation. Je propose une autre méthode. Une racine évidente étant x=0, on peut factoriser $V':V'(x)=x\left(-\frac{9}{4}x+\frac{21\sqrt{3}}{2}\right)$.

Un tableau de signe nous donne ensuite : $V'(x) \ge 0$ pour $x \in [0; \frac{14\sqrt{3}}{3}]$.

(d) Dresser le tableau de variation de V.

x	$-\infty$	0		$\frac{14\sqrt{3}}{3}$		$+\infty$
V'(x)	_	0	+	0	_	
V		\		<i>y</i> \		\

4. Conclure: Quelle valeur doit prendre x pour que la boîte ait le plus gros volume? Le tableau de variation nous donne un maximum pour V en $x=\frac{14\sqrt{3}}{3}$. Mais nous avions montré à la question 2 que $x\leqslant 7$. Or $\frac{14\sqrt{3}}{3}\approx 8,1$. Donc la valeur maximale de V est atteinte pour x=7cm.